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A Numerical Study of Three-Dimensional
Backward-Facing Step Flow

S.O. Park", K.S. Lim"" and R.H. Pletcher"""
(Received June 15. 1992)

The laminar and turbulent flow over a backward-facing step placed in a square duct was

investigated numerically. The aspect ratio of the step (step width/step height) was 3 and the area
expansion ratio was 2 : 3. Three-dimensional effects were significant due to the small aspect

ratio. To simulate turbulent flows, both a standard k-E model and a non-linear k-c: model were
employed and the results were compared. The non-linear model was found to yield better results.

From the numerical results, the existence of the corner vortex and the flow field associated with
it were clarified. The reattachment length of the three-dimensional flow was found to be

considerably shorter than the corresponding two-dimensional flow. The evolution of longitudi­
nal vortices was visualized. Surface flow patterns which clearly demonstrate three-dimensional

aspects of the flow were presented. Based on various data available, topological flow pattern was
also sketched. To support the findings explored in the present work, experimental data were

compared with the numerical data where applicalble.

Key Words: Backward-Facing Step Flow, Three-Dimensional Turbulent Flow, Aspect Ratio,
Non-Linear Turbulence Model, Corner Vortices, SIMPLE-C
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A E • Aw.AN,As.AT,AB : Finite-difference coeffi-

cients

C,C2,C",CD,CE : Turbulence model constants
G : Production rate of k
h : Step height
k : Turbulent kinetic energy

P : Static pressure
Re : Reynolds number based on step

height( =J!;_~)

S¢ : Integrated source term in tinite dif-
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Numerical and experimental studies of the two­

dimensional backward-facing step flow have been
reported by many authors. However, three-di­

mensional backward-facing step flow has not
received much attention to date; reported works

on the three-dimensional flow are rare. Three­
dimensional backward-facing step flow is quite

complex in nature in spite of its simple geometry.
The flow geometry considered in this study is

essentially identical to that of two-dimensional
backward-facing step flow except for the fact that

the aspect ration is very small. Here, the aspect

ratio is defined as the ratio of the width to the
height of the backward-facing step. Thus, in a low
aspect ratio backward-facing step flow (referred

to as three-dimensional backward-facing step flow
hereinafter), the effect of sidewalls confining the

step will be significant. The three-dimensionality

of the flow is mainly due to the secondary motion,
which can arise from two different sources; one is
pressure driven, and the other turbulent stress

driven (Bradshaw, 1987). Obviously, the secon­
dary motion can greatly alter the flow characteris­

tics. So far, many research efforts on the flow have

been directed toward the study of corner flows
(Bradshaw, 1987; Gessner, 1982) or of flows
through a bend (Humphrey et aI., 1981). Further,
most of the studies were limited to parabolic
flows in which downstream influences on the flow

were negligible. Since a backward-facing step
flow involves a large separated zone, the flow is
elliptic in nature. Also, owing to the abrupt area
change in the plane of step face, it is expected that
the major secondary motion will be the pressure­
induced one. However, far downstream of the
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: Wall shear stress

Abbreviations

: Foci at the surface

: Nodal point
: Saddle point

1. Introduction

step, this motion will be gradually relaxed to the
turbulence-driven one. An adequate simulation of

transition from the pressure-induced secondary

motion to turbulence-driven one may be a good
test problem for any turbulence model to be used

in three-dimensional flows.

It was found experimentally by de Brederode
and Bradshaw( 1972) that three-dimensional eff­

ects become important in backward-facing step
flows if the aspect ratio is less than 10. As a model

for the present study, we selected the backward­

facing step flow which undergoes two to three
expansion, and of which the aspect ratio (of the

step) is 3. The cross-section downstream of the

step face, therefore, is square; turbulence-driven

secondary motion in a duct of constant cross­
section is well documented (Demuren and Rodi,

1984). The primary objective of this investigation,
as an extension of our earlier work (Lim et aI.,

1990), is to increase our understanding of com­
plex three-dimensional turbulent flow field of a

backward-facing step. Though simple in geome­
try, understanding of such a flow is important in

practice, for it represents a basic flow configura­
tion for various bluff-body flows such as en­

countered in combustors, the flow around build­
ings, and around protuberances in a flow passage.

An adequate numerical simulation of a three­
dimensional backward-facing step flow will shed

light on the physics of the flow which is not yet
clearly understood.

In the present study, the flow field was comput­
ed under both laminar and turbulent conditions.

Since the laminar flow (numerical) simulation

requires no assumptions about turbulence model­
ing, the laminar flow solution was often compar­
ed qualitatively with the turbulent solution to
elucidate the turbulent flow field. This was felt

necessary simply because of lack of reliable exper­
imental data. The numerical scheme employed to
solve the present problem (three-dimensional in­

compressible Naiver-Stokes equations) is based
on the finite volume formulation and SIMPLE-C
(Van Doormal and Raithby, 1984).

The emphasis was on turbulent flow in this
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Fig. 1 (a) The flow configuration and the coordi-
nate system

(b) Control volume representation

study. It was felt necessary to use a turbulence
model capable of capturing turbulence-driven

secondary flow for the present problem. We selec­
ted the non-linear two-equation model proposed
by Speziale(l987). It was shown by Speziale that

the model successfully produced secondary
motion in a fully developed square duct flow. An

algf:braic stress model is also known to be capa­

ble of producing anisotropic turbulent stresses.
However, in the present study, the non-linear k-c:

model was adopted because it was simpler to use

than the algebraic stress model.
Flow patterns of secondary motion at several

downstream cross-sections were given to clarify
the three-dimensional nature of the flow. Surface

flow patterns and fluid particle paths were added
to increase our understanding of the flow. The

evo:lution and decay of corner vortices, which
seems to be essential in describing three-dimen­

sional sidewall effect, was explained.

2. Mathematical Model

The flow configuration with the coordinate

system for the present work is depicted in Fig.

I(a). The flow was assumed to be steady and
incompressible.

The continuity and the time-averaged Navier­
Stokes equations are written in Cartesian tensor
form as:

(8/8xJ (pUj ) =0.0, (l)

(8/8xJ (pU,UJ = - 8p/8x,+ (J/ axJ
[fl. (JUj / aX, + au,/ aXj) .~ pu;u;- ],

(i, j=1.2.3) (2)

The Reynolds stresses in Eq. (2) are modeled

by a two-equation turbulence model. The conven­

tional set of k-c: model equations (Launder and
Spalding, 1974) is given as:

(a/ aXj) (pUjk) = (a/ aXj) [ ~: (Jk/ axJ ]

+ pG- pc:, (3)

(a/ aXj) (pUjc:) = (a/ aXj) [ ~: (ae! aXj) ]

+P-{[CG-C2c], (4)

-·puiu;= --3-Pkc)'o+ fl.' (aUj ax,

+ au,;aXj) , (5)

fl.,'=p(C"k 2/c) , (6)

G-=-= - uiu; (au,; aXj) , (7)

C=1.44, C2=1.92, Cp '=0.09.

a.=l.O. ac '=1.3. (8)

The standard set of k- c: model equations is not
capable of producing anisotropic normal stresses
as can be clearly seen from Eq.(5). In the model

proposed by Speziale( 1987) which can produce

anisotropic normal stresses to make it possible to
predict turbulence-driven secondary flows, the

constitutive relation (Eq. (5» and the production
term (Eq. (3») are modified as follows while the

transport ransport equations remain the same.

~,-,. 2 --
fo= - PUiUj = -3-pkoo+ 2fl., D 0

4 C2(k3/ 2)[ , (- D-+3P p c: CD Dim mj

.- DmnDmnO,J + CE ([jo-Dmnoo)], (9)
G=-' - PUIU; (aU'; JXj) = v, (au) ax,

+au,;aXj) (au,;aXj) +4/3C2k3/c2
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[CD <l5,mJ5mj - J5mnJ5mn8ij) +4/3Cr:

(!5ij- J5mm8u!3)] (au,J aXj) , (10)

- 1
Dij=-i(aU;/ax,+au,JaxJ, (11)

Dij= Un (a/axn)Dij- (aU,JaXn)Dnj
- (auj/aXn) Dni'

(i, j, m, n=l,2,3) (12)

CJ=1.68, Cr:=1.68. (13)

As can be seen from Eqs. (9) and (10), the

non-linear model differs from the standard one by

the addition of the last two terms, which might be

called the non-linear terms.

3. Numerical Procedure

3.1 Finite volume equations and grid system

To solve the present problem, Chen's CNS3D

code( 1986) based on the SIMPLE-C algorithm

(Van Doormal and Raithby, 1984) was adopted
and modified. The main modifications involved

the turbulence model. Amano's scheme( 1984) for

the discretization of the convective and diffusive

flux terms were also implemented. Amano used a

fourth-order expansion of the exponential term of

the Spalding's( 1972) exponential scheme to make

improvements over the conventional hybrid­

scheme. The numerical solution procedure com­

bines finite volume integration techniques for the

momentum and scalar transport equations and

pressure correction equation to enforce local and

global mass conservation. The discretized equa­

tions are obtained by casting the governing equa­

tions into a generic transport equation and then

integrating the generic equation over the control

volume shown in Fig. l(b). The resulting discret­

ized representation for the general transport equa­

tion can be expressed as

APrPp=ArrPr+ AwrPw+ ANrPN + AsrPs
+AD rPIJ+A urPu+S"8( Vol). (14)

Where the link coefficients Ar:, A w , ..• , involve

convection, diffusion, and area terms. 5" is the

source term. For the details of the derivation, the
readers are refered to Patankar( 1980) and Chen

(1986). Equation (14) is solved using one sweep

of a tridiagonal matrix solver in each direction.

For computation with the non-linear k-E; model,

the non-linear terms of Eq. (9) were included in

the source term.

A staggered grid system where all the velocity

components are at the grid nodes and the pressure

is assigned at the corners of the velocity control

volume was employed (Fig. I(b». A conventional

staggered grid system often requires modification

of link coefficients in Eq. (9) for the velocity

points adjacent to the obstruction, since the con­

tributions to the coefficients owing to the blocked

control volume by the obstacle should be account­

ed for. Durst and Rastogi(l979) observed that

their calculations using a conventional grid sys­

tem produced unrealistic results in the region

downstream of the obstruction if proper modifica­

tion was not made. However, the present grid

system does not require any modifications to the

coefficients.

A three-dimensional mesh of grid lines in the x,
y, and z directions was constructed throughout

the computational domain using a stretching

transformation such that the grid lines were con­

centrated near the step edge (Fig. 2(a». The

computational domain consists of the half of the

flow domain divided by the centerplane of the

symmetry. For turbulent flow, preliminary numer­

ical experiments revealed that the convergence

was strongly influenced by the grid distribution

near the step. It was also realized that the present

numerical solution was particularly sensitive to

(a)

Y~L: x
(b)

(a) The complete grid distribution
(b) A typical mesh near the step

Fig. 2 Typical grid arrangement
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For laminar flow computations, a 36 X 31 X 21

(x*y*z) grid was used. The computaional doma­

in ranged from xlh=O.O (the plane of the step)
to x I h ,= 20. The laminar flow computation was

of a somewhat preliminary nature and was car­

ried out to evaluate the convergence of the solu­
tion algorithm. Computations were carried out

for the case of the Reynolds number of 100, 300,
and 500. The Reynolds number was based on the

average inlet velocity and the step height. For

turbulent flow computations, a 32 X 22 X 15 (x *y *

z) grid was used. The computational domain

ranged from xlh=-4 (upstream of the step face)

to x I h == 20. A rigorous grid dependence test was
not carried out. However, computations using a
coarser grid (21 X 21 X 15) resulted in a flow field

very close to the one obtained with the 32 X 22 X

15 grid. The differences in the mean velocity

profiles between two grid systems were at most
I%. From this, it was decided that the 32 >, 22 X 15
grid system might be sufficient for the purpose of

present study. Three Reynolds numbers were
considered: l.Ox 104

, 7.0x 104 and l.Ox 105
•

The solutions were considered to be converged
when the following convergence criterion was
met.

0.0 L-__---l -..l ---'- --'

0.0 0.05

t..X,b

Fig. 3 Convergence dependency on the grid refine­
ment

8

o convergence

the aspect ration (ratio of alb in Fig. 2(b)) of the

computational cell near the salient edge of the

step. Figure 3 shows various grid aspect ratios at

which converged solutions were obtained. As can
be seen, the convergence depended strongly on the
aspect ratio of the cell. A converged solution was

obtained when b< a. A plausible explanation for
this can be given as follows. For the purpose of

illustration, consider the pressure-correction
equation in two-dimensional flow which can be

written as

We note here that the source term 51' is another

form of mass conservation principle. Near the

edge of the step, it is likely that the au I ay term
is considerably larger than the avI ax term.
Therefore, to closely approximate the mass Con­
servation term, a very small'a'( that is LJy) would
be ne';essary. If the grid spacing, 'a' were large,
the mass conservation may not be represented

correctly which may cause divergence of the solu­
tion. The converged solution was not influenced
significantly by the spanwise grid spacing in the
shear layer as long as the grid is clustered near the

SI'={(pU*)w~ (pU*)e}a+{(pV*),
-(pV*)n}b. (16)

where

A pP;'= AEP~+ AwP;"'+ ANP~
+ASP;+SI', (1S)

(ILJUlmax+ ILJ Vlmax + ILJ Wlmaxl I Uref +
ILJPlmaxIU;ef s l.O X 10., (17)

where Uref is the average inlet velocity. About
1000- 1200 iterations were necessary for conver­
gence when the standard k-E. mode:! used. When
the non-linear k-E. model was used, additional

700- 800 iterations were necessary. In this case,
the converged solution field with the standard

k-E. model was taken as the initial data.
3.2 Boundary conditions
Turbulent flow; On the downstream

boundary plane, the Neumann boundary con­

dition, aif>/ax = 0, where if> denotes any physical
variable, was prescribed. Near the wall, standard
wall functions (Launder and Spalding, 1974)
were applied to save grid points in the near wall
region. The following functions were used.



6 S.O. Park, K.S. Lim and R.H. Pletcher

16 r--------------------,

00 200 400 600

Reynolds number

Fig. 4 Reattachment length versus Reynolds number
for laminar flow

predictions

o The autl1ors.3-D flow
o Hackman et 01. .2-0 flow

(with measured inlet
profiles)

o Hackman et at. .2-0flow
(with parabolic inlet
profiles)

measurements
6. Denham and Patrick .2-0

flow

4

12

slightly shorter than in two-dimensional flow.

Cross-sectional velocities at several downst­
ream stations are vector-plotted in Fig. 5. It is
interesting to observe the development of seconda­

ry motion with downstream distance. Clearly, the
velocity vectors depicted in Fig. 5(a) show that
the major secondary motion outside of the recir­

culation zone is in the downward direction,

which can be anticipated since the cross-sectional
area for the streamwise mass flow is expanding.

As the flow proceeds further out of the recircula­
tion zone, the downward motion is developed to

form a pair of horseshoe-like streamwise vortices
(what we see in Fig. 5(c) is one of the pair).

Since the laminar flow in straight constant area

square duct will eventually be fully developed
with zero cross-sectional velocities, the secondary
motion seen in Fig. 5 is expected to die out far

downstream. The length of the duct necessary for
the flow to adjust to a (new) fulIy developed state

wilI be quite long, since the time scale for the
secondary motion to decay will be governed by
the molecular viscosity. Figure 6 shows the sur­
face flow pattern in laminar flow. The spanwise
location of the line of separation clearly indicates
that the flow is strongly three-dimensional and
the reattachment length of the recirculating region
varies across the duct width. A node can be
identified in the surface flow pattern of the bot­

tom wall. It is also noted that the reattachment

.s=

':. 8
x

4.1 Laminar flow
Figure 4 compares the predicted reattachment

length in the centerplane with those of two-dimen­
sional results (Denham and Patrik, 1974; Hack­

man et aI., 1984) for the Reynolds number range
of 0-500. As can be seen, the present compu­
tation successfully reproduced the tendency that
the reattachment length increases with the
Reynolds number. One may also note that the
reattachment length in three-dimensional flow is

(~t =kUpCI4k~12/1n(EypC~/4kJF/J).

(18)

(19)

(20)

4. Results and Discussion

where the subscript 'in' refers to the inlet plane.

The above boundary condition is the one typi­
cally employed in predictions when no experi­
mental boundary condition is available (Nal­

lasamy, 1985).
At the symmetry plane, the velocity, W, was set

to zero, while all the other quantities were re­

quired to have zero gradient normal to this plane.
Laminar flow; At the wall boundary,

no slip conditions were specified. At the face of
inflow boundary of the plane of the step edge,

fully developed velocity profile was prescribed,
the analytic form of which is readily available
(White, 1974). Boundary conditions for outflow
plane and symmetry plane were given the same

manner in the turbulent flow computations.

The subscript' p' refers to the grid point next to
the wall and Up represents velocity vector paral­

lel to the wall. At the inlet, a uniform distribution
of all variables was prescribed and the secondary

velocities were set to zero. The turbulent kinetic

energy, k, and its dissipation rate, c, were given
as follows (Qin, 1984).

k ,n =0.003X Ufn,
cln=0.09xkii,5!(0.03xh), (21)
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cessful. Therefore, in the initial stage of iteration,

the calculations were carried out using the stan­
dard model. After several iterations, the turbu­
lence model was then switched to the non-linear
one. The other numerical problem encountered
was one associated with the first grid points near

the wall boundary, The non-linear term of Eq. (9)

became abnormally large at those points. Thus, it
was necessary to omit the non-linear term at the

first (from the wall) grid points. This procedure is

equivalent to the omitting the source terms
producing the secondary motion at the first grid

points (Rodi, 1982) when the algebraic stress
model is used.

Streamwise mean velocity profiles in the center­

plane (z/ h= 1. 5) and in the quarterplane (z/ h=
0.5) of the three-dimensional backward-facing

step flow of the aspect ratio 3 and the area expan­
sion ratio 2:3 are displayed in Fig. 7(a). The

Reynolds number based on the step height is 7.
Ox 104

, The predictions using the non-linear tur­

bulence model and those using the standard
model differ little from each other. The standard
model predicts slightly larger velocities in the

shear layer. The turbulent kinetic energy profiles
depicted in Fig. 7(b) show larger disagreements
between the two predictions. The non-linear

model gives a larger peak value of the kinetic
energy in the shear layer. Also, the transverse

location of the peak value is higher in the predic­

tions using the non-linear model. Eaton( 1980)
found that when the peak value was larger and
the transverse location was higher, the reattach­

ment length became longer. The ability of the
non-linear model to predict higher peak values of

the kinetic energy seem to render the reattachment
length longer, as was demonstrated by Speziale
(1987) for two-dimensional flows. However, in
the three-dimensional case, the reattachment
length predicted using the non-linear model did
not differ greatly from the one with the standard

model. We attribute this fact to the effect of
secondary motion.

Both the non-linear model and the standard
one predicted the reattachment length to be about

(c)

8.0 10.0

8.0

IlIlii iii",. , . ~ . ,

x/h=20.0
3.0 ~

1.5

(b)

2.0 I 2.0
. I! I I

"". 'j I I I

'0 :!i i~!i!III 1.0

.-. - ~ ~ I I I

x/h=9.85
3.o

F
r'
I ,.

2.0

x/h=4.54

(a)

,I" .

~
.o .......-'-.'--'--'~- 0,0

0.0 1.5 0.0

'I"

(a)

'::.,
0'%.0 2.0 4.0 ,jh 6.0

IFig. 5 Cross-sectional velocity in laminar flow
(Re= 1. 0 X 102

)

line is bulged outward. The bulging phenomena
near the side wall was experimentally observed in

Armaly et al.'s work(l983).

4.2 TurbuleDt flow
As mentioned previously, a standard k-E; tur­

buknce model and a non-linear k-E; model were
employed for the present simulation. The non­

linear k-E; model was felt to be necessary if we
wen~ to take due account of the turbulence driven
secondary motion, which is well known to be
present in straight duct of any non-circular cross­
section. It should be mentioned here that numeri­
cal difficulties were encountered when the non­
linear k-E; model was used. The use of non-linear

model from the start of the calculation was unsuc-

4.0 x/h 6.0

(b)

(a) Sidewall
(b) Bottom wall

Fig. 6 Surface flow patterns in laminar flow
(Re=1.0X102

)
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(a) Velocity profiles
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Fig. 7 Selected longitudinal profiles in the duct flow
for the aspect ratio of 3.0 and area expansion
ratio of2:3 (Re=7.0xI04

)

5.0- 5.3 times the step height in the centerplane.

The non-linear model produced a slightly longer
reattachment length. In two-dimensional flow, the

non-linear model resulted in a significant increase
in reattachment length over the standard model
(Speziale, 1987). The reattachment length in two­

dimensional flow with the same expansion ratio is

about 6.0-7.0 times the step-height (Eaton and
Johnston, 1981; Kim, 1987). Thus, it can be said

that the reattachment length is much shorter in

three-dimensional case than in the corresponding

two-dimensional case. In three-dimensional flow,

the secondary motion enhances momentum
exchange between the mainstream and the recir­

culation zone. As a result, the strength of recir­
culation is weakened, and hence the reattachment
length shortens.

To support these findings, we calculated a

three-dimensional backward-facing step flow of
aspect ratio of 1.0 and area expansion ration of I:
2, for which some experimental data was avail­
able in Stevenson et al.'s(l984) work. As can be
seen from Fig. 8, the prediction of mean veloc­

ities, turbulent kinetic energy, and reattachment
length agree well with the experimental data. The
mean velocity and kinetic energy profile compar­
ions with the experimental data in Fig. 8 clearly
show that the results of the three-dimensional
calculations give much better agreement to the

(a) Velocity profiles
(b) Turbulent kinetic energy profiles

Fig. 8 Selected longitudinal profiles in the duct flow
for the aspect ratio of 1.0 and area expansion
ratio of 1:2 (Re=1.7SxI05

)

experimental data than the Stevenson et al.'s two­

dimensional predictions. The present numerical

calculation predicted the reattachment length to
be about 7. It should be noted here that Stevenson

et al. predicted the reattachment length to be
about 7 times the step height (for agreement with

experimental measurement) by modifying the
model constant of the dissipation rate equation.
They performed purely two-dimensional calcula­

tion. At a first glance, our computational results

about the reattachment length for this case seem

contradictory to the finding that the reattachment

length was about 5.0- 5.3 times the step height for
the flows of the aspect ratio of 3. It is natural that

we should expect shorter reattachment length

when the aspect ratio is I. However, the Steven­
son et al.'s result showed that it was even longer.

To clarify this anomaly, we performed several
calculations for the Stevenson et al.'s geometry for

various Reynolds numbers. The results are illus­
trated in Fig. 9. As can be seen, the effect of the
Reynolds number is very significant for this case.
Stevenson et al.'s experiment corresponds to the
Reynolds number of 1.75 X 105. The results shown

in Fig. 9 point out that the reattachment length is
about 5.4 when the Reynolds number is 1.0 X 104 •

Thus, our conclusion that reattachment length in
the three-dimensional flow is shorter than in

two-dimensional one is not obscured by the
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(b)

(a) The prediction with standard k-f; model
(b) The prediction with non-linear k-f; model

Fig. 10 Cross-sectional velocity in the turbulent flow
(Re =, 7.0 X 10')

obtained with the standard model (Fig. lO(a)) is
somewhat similar to that of laminar flow (Fig. 5).

It is notable that the center of the primary vortex
in turbulent flow of Fig. 10 (a) is located at about

the same height of the one in laminar flow (Fig.
5). But, it is noted that the center of the primary

vortex predicted with the non-linear (Fig. lO(b))

is considerably lower than the one with the stan­
dard model (Fig. lO(a)). The discrepancy between

the location of the vortex center, however, did not
affect mean velocity and kinetic energy profiles

significantly. This can be ascertained in Fig. 7(a)
and 7(b). The mean velocity and turbulent kinetic

energy profile predictions using different turbu­
lence model differ little from each other. Con­
sidering the fact that the standard model is not
capable of producing turbulence-driven secon­
dary motion, the main thrust for the cross­

sectional flow must be pressure-driven. In fact, the
curved flow passage caused by the blockage effect
can be considered as the major source of secon-

</h=20.0

OO:~:~~ ::.~
0.0 1.5

"Oi;~:-::-:~II, •• _ ~ .. _ • •

tlll __ .. ". ,

It" .,., 'I
2 /) 111 " , • ,

\,., Ii'

'-. ~ ~ , { I

... ·'/1 f' ,

1.(1 ,iHi iii

[
:::::, :

." .... , . ,

o.o~~
0.0 1.5

x/h=9.9

" ....", \ \ 1

'.0 'Wli iii i
""", I I I , I

"OF""::,.~".", •• , . I
...... , .. " ..
'-'_,.'" , ,

.,.:~

x/h=5.0

111111 I I I I

2.0

.3.0 .-:

].:' :'1 ::rr :.T?I'
111111 I I I I • '1\\1 \ I I 1

lilli/II I j J "'111 \ I I I

:::'I!III! I~ ::~!!i! i!I~
0.0 1.5 0.0 1.5

(a)

y/h illl I I I I I I

~
O'::;~~~; ~ ;~
0.0 1.5

- 'fh

4-+
0
--'--5-.0TX'-0-·---r--,.-OXT,-0-=-'-'--,.-5X',-0-=-'-,-2-....,OX' O'

Reynolds number

8

'?
"---
~ 7
:5
'"c:
~

c: 6
OJ

E
.c:
u
..s 5
"0
~

Stevenson et al.'s experimental results. When the
aspect ratio was 3, the reattachment length in the
centerplane varied little with the Reynolds num­

ber in the present range of numerical experiment

(However, the location of corner vortices changed
sensitively with the Reynolds number as discussed

later). A very analogous phenomenon in which
the Reynolds number effect becomes important as

aspect ratio decreases can be found in Couette

flow between rotating concentic cylinders. In this
cose, a critical Reyndds number at which wavy

vortex flow develops is strongly dependent on
height·to-width ratio (Oi Prima and Stuart, 1983).

To take a look at cross-sectional flow patterns,

we now return to the case of our major effort, that
is, the case of three-dimensional backward-facing

step flow of aspect ratio 3 and area expansion
ratio 2:3. Fig. lO(a) and lO(b) illustrates, respec­

tively, the cross-sectional flow velocities obtained

with the standard k-E; model and the non-linear
k-E; model. Both figures show the evolution of
longitudinal vortices. However, the detailed vor­

tical flow patterns are considerably different from

each other. The center of the primary vortex at x /
h=20 in Fig. lO(a) is located higher than the one
in Fig. lO(b). Further, at x/h=5 and 9 in Fig.
IO(b), the formation of weaker vortices are clearly

visible near the bottom corners, while it is not so
in Fig 10(a). The qualitative behavior of1ongitu­

dinal vortex development observed in the results

Fig. 9 Predicted reattachment length as function of
Reynolds number in the turbulent flow
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(a) Particle motions from the step edge
(b) Particle motions from the bottom wall

just downstream of the step

Fig. 12 Three-dimensional tracks of particle motion
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suggests that the three-dimensionality of the flow
is at least partly attributable to the existence of a
corner vortex as pointed out by de Brederode and
Bradshaw( 1972).

The kinematic plausibility of the topological
flow pattern illustrated in Fig. 13 may be checked

# .
by a topological rule. Kao et al.( 1983) showed
that the rule for skin friction lines on the interior

(b)

(a) Sidewall (b) Bottom wall

Fig. 11 Suface flow patterns predicted with non­
linear k-c model (Re=7.0xI04

)

dary motion. When the flow starts to adjust to the

constant cross-sectional area outside of the recir­
culation zone, we expect that the flow experiences
differences in normal stresses. Since the standard

k-c model is not capable of generating
anisotropy property in normal stresses, the

turbulence-driven secondary motion is not effect­
ed adequately. Perhaps, this can explain the quali­

tative resemblance between cross-sectional veloc­
ity patterns in laminar flow (Fig. 5) and those in

trubulent flow with the standard model (Fig.

lO(a». We may conclude that the discrepancy
between Fig. lO(a) and Fig. lOeb) is due to the
effect of turbulence-driven secondary flow. Obvi­
ously, the anisotropy in turbulence is seen to play

a considerable role in establishing secondary

motion far outside of the recirculation region as
seen in Fig. lO(b).

The surface flow patterns on the bottom and on

the side wall obtained from the numerical results
are displayed in Fig. 5 (laminar flow) and Fig. II

(turbulent flow). Also, the tracks of particles

departed from the bottom wall just downstream
and just upstream of the step face in the turbulent

flow are shown in Fig. 12. It is seen that a fluid
particle from the boundary layer around the
corner between the duct sidewall and the (upper)

bottom floor of the step enters the separated

region, recirculates in a spiral fashion toward the

centerplane and leaves the separated region near
the reattachment line (Fig. 12(a». Flow particles

leaving bottom floor is seen to spiral toward the
corner between the bottom wall and the sidewall.
Three-dimensional particle motion exhibited in

Fig. 12(a) is very similar to the one illustrated by
Goldstein et al.(l970).

Based on the surface flow patterns, particle
paths, and velocity data, we were able to sketch
the topological features of the present flow, which

is depicted in Fig. 13. The position and shape of
the corner vortices (represented as two feci) are
very similar to those depicted by Ruderich and
Fernholz( 1986). It is notable that all the limiting
streamlines on the bottom wall are connected to
the corner vortex (Fig. II and Fig. 13). This
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Fig. 13 Schematic diagram of surface flows

1.5
0.0

5. Conclusions

that the corner vortex appears only at high
Reynolds numbers.

A three-dimensional backward-facing step flow

in a square duct having the aspect ratio of three
and undergoing two to three expansion was stud­

ied numerically. Additional caculation was also
carried out for the flow of Stevenson et al.(l984)

having the aspect ratio I and the expansion ratio
I:2. Predictions were compared with their experi­

mental data. The following was found.

(1) The reattachment length for three­

dimensional flow was much shorter than that for
two-dimensional flow and varied across the duct

width. This is thought to be due to the transport
of momentum into the recirculation zone by the

secondary motion represented as longitudinal
vortices.

1.0x/h

(b)

Re=l.OxlO'

0.5

(b)

1.0x/h

(a)

(a) Re=l.Ox 105

~

~
\'\. -
\'\.: -:::::-

0.5

0.0

1.0

Fig. 14 Detailed description of surface flow pattern

surface of a one-fold torus (a geometry which is

topologically equivalent to the present configura­
tion) is given as

(22)

where IN denotes the sum of the indices lor node
points (including focus) and Is the sum of the
indices for saddle points. The index value for N
is I and 5 is -I. Considering the symmetry of the
flow, we have 6 nodes (4 foci and 2 nodes) and 6
saddle points (four along the sidewalls and two

along the centerline). The summations of each

index are I N =6 and Is= -6 so that Eq. (22)
holds.

Figure 14 shows the variation of surface flow

pattern near the step face with the Reynolds
number. It is noted that the corner vortex moves

closer to the step face as the Reynolds number
increases. In laminar flow calculations, the corner
vortex could not be identified. However, the
shape of the limiting streamlines was similar to
the case of turbulent flow. It might be guessed

(2) In laminar Oow, the reattachment length
was strongly dependent on the Reynolds number

as in two-dimensional flows. In turbulent three­
dimensional flow, the effect of Reynolds number
was significant when the aspect ratio was small as

demonstrated from the predictions for the flow of
Stevenson et al.

(3) In turbulent flow, the three-dimensionality
could be characterized by the presence of the

corner vortex. The location of the corner vortex
was found to vary with the Reynolds number.

(4) The development of longitudinal vortices

and topological flow pattern seemed to be more
effectively described by the use of non-linear k-r;
model.

(5) The longitudinal vortices evolved by the
curvature of flow passage (pressure-driven) at the

first stage. Later, it was influenced by the ani­
sotropy of the turbulence.

Acknowledgements

The first author would like to express his sin­

cere thanks to Prof. K. Kuwahara of ISASS,
Japan for his interest about the work and com-



12 s.o. Park, K.S. Lim and R.H. Pletcher

puter time made available to the first author
during the initial stage of this research. He also

would like to thank Dr. W. Y. Soh of NASA

Lewis Research Center for making the Reference
(Kao et aI., 1983) available. Part of this research

was supported by the Korea Science and Engine­
ering Foundation.

References

Amano, R.S., 1984, "Develoment of a Tur­

bulence Near-Wall Model and its Application to

Separated and Reattached Flows," Numerical
Heat Transfer, Vol. 7, pp. 59-75.

Armaly, B.G., Durst, F., Pereira, J.C.F. and

Schonung, B., 1983, "Experimental and Theo­
retical Investigation of Backward-Facing Step
Flow," J. Fluid Mech., Vol. 127, pp. 473-496.

Bradshaw, P., 1987, "Turbulent Secondary
Flows," Ann. Rev. Fluid Mech., Vol. 19, pp. 53

-74.

Chen, Y.S,. 1986, "A Computer Code for
Three-Dimensional Incompressible Flows Using

Nonorthogonal Body-Fitted Coordinate Systems,"
NASACR-178818.

de Brederode, V. and Bradshaw, P., 1972,
"Three-Dimensional Flow in Normally Two­

Dimensional Separation Bubbles: I. Flow

Behind a Rearward-Facing Step," Aeronautical
Report, No. 72-19, Imperial College.

Demuren, A.a. and Rodi, W., 1984, "Cal­

culation of Turbulence-Driven Secondary Motion

in Non-Circular Ducts," J.Fluid Mech., Vol. 140,

pp. 189-222.
Denham, M.K. and Patrick, M.A., 1974, "La­

minar Flow Over a Downstream Facing Step in a
Two-Dimensional Flow Channel," Trans. Inst.
Chern. Engrs., Vol. 52, pp. 361- 367.

Di Prima, R.C. and Stuart, J.T., 1983, "Hyd­

rodynamic Stability," J. Applied Mechanics, Vol.
50, pp. 983-991.

Durst, F. and Rastogi, A.K., 1979, "Theoretical
and Experimental Investigations of Turbulent
Flows with Separation," in "Turbulent Shear

Flow," Durst, F., Launder, B.E., and Schmidt, F.

W., Eds., Springer-Verlag, Newyork, Vol. I, pp.
208-219.

Eaton, J.K., 1980, "Turbulent Flow Reattach­

ment: An Experimental Study on the Flow and
Structure behind a Backward-Facing Step," Ph.D

Thesis, Stanford University.
Eaton, J.K. and Johnston. J.P, 1981, "A Revi­

ew of Research on Subsonic Turbulent Flow
Reattachment," AIAA. J., Vol. 19, pp. 1099

-1100.

Gessner, F. B., 1982., "Corner Flow (Secon­
dary Flow of the Second Kind)," The 1980-1981

AFOSR-HTTM-stanford Conferecnce on Com­

plex Turbulent Flows, Stanford University, Vol.
I., pp. 182-212.

Goldstein, R.J., Ericksen, V.L., Olson, R.M.
and Eckert, E.R.G., 1970, "Laminar Separation,

Reattachment and Transition of the Flow over a
Downstream-Facing Step," Trans. ASME, J. of
Basic Eng., Vol. 92, pp. 732-741.

Hackman, L.P., Raithby, G.D. and Strong, A.

8., 1984, "Numerical Predictions of Flows Over
Backward-Facing Steps," Int. J. Numer. Methods

in Fluids, Vol. 4, pp. 711 - 724.

Humphrey, J.A.C., Whitelaw, J.H. and Yee, G.,
1981, "Turbulent Flow in a Square Duct with

Strong Curvature," J. Fluid Mech., Vol. 103, pp.
443-463.

Kao, H.C., Burstadt, P.L. and Johns, A.L.,

1983, "Flow Visualization and Interpretation of
Visualization Data for Deflected Thrust V/STOL
Nozzles," NASA TM 83554.

Kim, J.J., 1987, "Investigation of Separation

and Reattachment of a Turbulent Shear Layer:

Flow Over a Backward Facing Step," Ph. 0

Thesis, Stanford University.

Launder, B.E. and Spalding, D.B., 1974, "The
Numerical Calculation of Turbulent Flows,"
Comput. Methods in Applied Mech. and Engr.,

Vol. 3, pp. 269-289.
Lim, K.S., Park, S.O. and Shim, H.S., 1990, "A

Low Aspect Ratio Backward-Facing Step Flow,"
Experimental Thermal and Fluid Science, Vol. 3,
pp. 508-514.

Nallasamy, M., 1985, "Critical Evaluation of



A Numerical Study of Three-Dimensional Backward-Facing Step Flow 13

Various Turbulence Models as Applied to Inter­
nal Fluid Flows," NASA TP 2474.

Patankar, S.V., 1980, Numerical Heat Transfer

and Fluid Flow, McGraw-Hill
Qin, H., 1984, "Flow Characteristic of a Sud­

den Axisymmetric Expansion," PDR/CPDUIC/
4, Imperial College of Science and Technology,

London.
Rodi, W. et aI., 1982, "The 1980-1981 AFOSR­

HTTM-Stanford Conference on Complex Tur­
bulent Flows," Stanford University, Vol. III., pp.

1495-1516.
Ruderich, R. and Fernholz, H.H., 1986, "An

Experimental Investigation of a Turbulent Shear
Flow with Separation, Reverse Flow, Reattach­

ment," J.Fluid Mech., Vol. 163, pp. 283-322.
Spalding, D.B., 1972, "A Novel Finite Differ-

ence Formulation for DifTerential Expressions
Involving both First and Second Derivatives,"
Int. J. Numer. Methods Engr. Vol. 4, pp. 551
-556.

Speziale, C.G., 1987, "On Nonliner k-l and

k-E Models of Turbulence," J.Fluid Mech., Vol.
178, pp. 459-475.

Stevenson, W.H., Thompson, H.D. and Craig,
R.R.,1984, "Laser Velocimeter Measurements in

Highly Turbulent Recirculating Flows," Trans.
ASME, J. of Fluids Eng., Vol. 106, pp. 173-180.

Van Doormaal, J.P. and Raithby, G.D., 1984,

"Enhancements of the Method for Predicting
Incompressible Flows," Numerical Heat Transfer,
Vol. 7, pp. 147-163.

White, F.M., 1974, "Viscous Fluid Flow,"
McGraw-Hill, pp. 123-125.


